随着人工智能(AI)技术的飞速发展,其在高等教育领域的应用也越来越广泛。

AI不仅能够提高教育效率,还能够改变传统的教学模式,为学生提供更加个性化和互动的学习体验。

以下是六种AI在高等教育中的应用案例,它们正在颠覆传统的教学方式。

1. 智能辅导系统

智能辅导系统(Intelligent Tutoring Systems, ITS)是一种基于AI的教育软件,它能够根据学生的学习进度和能力提供个性化的指导。这种系统通过分析学生的答题情况和学习习惯,为他们推荐适合的学习材料和练习题,从而帮助学生更有效地掌握知识点。

2. 自适应学习平台

自适应学习平台利用机器学习算法来分析学生的学习行为和成绩,然后调整教学内容和难度,以适应每个学生的学习速度和风格。这种平台能够确保每个学生都能在自己的节奏下学习,同时也能及时发现并解决学习过程中的问题。

3. 虚拟助教

虚拟助教是AI驱动的聊天机器人,它们可以回答学生的问题、提供学习资源、提醒作业截止日期等。这些虚拟助教可以24/7不间断地为学生提供服务,极大地提高了教学效率和学生满意度。

4. 智能评估工具

AI评估工具能够自动批改选择题、填空题甚至部分主观题。这些工具不仅可以减轻教师的工作负担,还能提供即时反馈给学生,帮助他们及时了解自己的学习状况,并进行相应的调整。

5. 交互式学习游戏

通过将AI技术融入到学习游戏中,学生可以在玩乐中学习新知识。这些游戏通常包含复杂的AI算法,可以根据学生的表现调整难度和内容,使学习变得更加有趣和有效。

6. 语言学习应用

AI语言学习应用如Duolingo等,通过个性化推荐学习计划、语音识别和自然语言处理技术,帮助学生提高语言技能。这些应用能够模拟真实的语言环境,让学生在实践中学习,同时提供即时的发音和语法纠正。

AI人工智能正在逐步改变高等教育的面貌,通过上述六种应用案例,我们可以看到AI如何为学生提供更加高效、个性化和互动的学习体验。

随着技术的不断进步,未来AI在教育领域的应用将更加广泛,有望进一步推动教育公平和质量的提升。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

更多推荐